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Abstract— These Enterococcus faecalis is a Gram-positive, coccus bacterium which majorly causesnosocomial infections, abdominal infections, wound 
infections and endocarditis.E.faecalisdepicts multi drug resistance to antibiotics such aspenicillin, ampicillin, vancomycin, gentamycin, streptomycin 
anddaptomycine. The drug resistance of pathogen to the existing drug molecules necessitates the implementation of alternative strategy through in silico 
techniques. sRNAs are non-coding,small RNAs that regulate the metabolic function in the bacteria. Eight sRNA candidates were predicted 
inE.faecalisusingsRNAPredict. Choloylglycine hydrolase of linear amide C-N hydrolases cleaves the carbon-nitrogen bonds other than peptide bonds in 
linear amides.Its critical role in various biological activities such as emulsification, absorption of lipids and glycocholate metabolism leads to growth, 
multiplication of the pathogens and non-homologous to humans hence, it was selected as putative drug target forE.faecalis.Homology model for 
choloylglycine hydrolasewas generated using Modeller 9v13 and validated through Ramachandran plot, ProQ and ProSA. Five existing inhibitors were 
taken for shape based similarity screening against Asinex database using Phase v3.2 and resulted hits were taken for docking (HTVS, SP and XP) 
through Maestro v9.6. Further, to validate the docking interactions binding free energy (ΔG) were calculated for each dockedcomplexes. Comparing the 
leads to the existing inhibitors revealed 15 leads have better binding affinity and molecular interactions. Among that, lead1 has the lowestΔG of -88.90 
kcal/mol and found to obey the ADMET properties. Thus the lead1 predicted in the present study is adequate to block the biological activity of 
choloylglycine hydrolaseand in turn decreases the emulsification, absorption of lipids and multiplicationof E.faecalis. 
Index Terms— ADMET, Binding free energy, choloylglycine hydrolase, docking, Enterococcus faecalis, nosocomial, sRNAPredict 

——————————      —————————— 
1 INTRODUCTION                                                                     

mall RNAs are regulatory non-coding RNAs which were 
encoded in both eukaryotic and prokaryotic genomes and 
most of these RNA transcripts regulate the gene expres-

sion by modifying mRNA stability and translation. These 
RNAs involves in the function by pairing with other RNAs 
and results in the formation of a part of RNA-RNA complexes, 
or by adopting the other nucleic acids structures [1]. Some of 
these RNAs can also control over the virulence gene expres-
sion in bacterial pathogens with respect to the host signals [2]. 
Till date researchers described the role sRNA in the stress re-
sponse, iron homeostasis, outer membrane protein biogenesis, 
sugar metabolism and quorum sensing and this is suggesting 
that sRNAs play an essential and central role in the patho-
genicity of many bacteria. 

Recently, research has been started to find the role 
and importance of sRNAs in Gram-negative pathogens such 
as Salmonella typhimurium and Pseudomonas aeruginosa [3] S. 
typhimurium has showed genetic islands showed the host in-
duced expression in macrophages and thus contributed to 
virulence [4]. 103 sRNAcandidates were described inListeria 
monocytogenes [5], [6], [7], [8]. Only two sRNAs have been 
identified and studied inStreptococcus pyogenes [9], [10] and 

five sRNAs inStreptococcus pneumonia [11].  12 sRNAs were 
identified in Staphylococcus aureus, out of 12; seven were local-
ized on pathogenicity islands. Some sRNAs showed variations 
in expression levels among pathogenic S. aureus strains and it 
suggesttheir role in the regulation of virulence factors [12]. In 
2010, Mraheil et al., performed comparative global analysis of 
sRNAs for five major high-risk Gram-positive pathogens on 
global scale such as L. monocytogenes, S. aureus, S. pyogenes,. E. 
faecalis and C. difficile by utilizing the Bioinformatics approach 
[13]. 

Enterococcus faecalis is Gram-positive cocci, facultative an-
aerobes (Gilmore et al., 2002[14] and they found in soil, water 
and plants. It is a human commensal and member of the lactic 
acid producing bacteria. It is also used as an indicator of faecal 
contamination and to represent causes of the nosocomial infec-
tions [15].Presently, numbers of infections were gradually in-
creasing by cause of E. faecalis but virulence mechanism of this 
organism was poorly understood. 

Infections caused by the organism mainly affect the young 
and immunosuppressedsubjects in endocarditis, meningitis, 
pneumonia, peritonitis, visceral abscesses, urinary infections 
and septicemias [14]. Enterococci are now placing the top three 
nosocomialbacterial pathogens [16], [17], [18] around the 
globe. They areacquiring resistance to multiple antibiotics thus 
they become a major health problem to the hu-
mans.Moreover,patient records of Sri Venkateswara Institute 
of Medical Sciences (SVIMS), Tirupati (Rayalaseema region 
Andhra Pradesh, India) also reported it is one of the most pre-
dominant pathogen causing endocarditis [19]. 
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Earlier reports by the US revealed that most patients with 
vancomycin resistant Enterococci (VRE) were in ICUs and pa-
tients with VRE treatment prone to chronic renal failure, can-
cer, organ transplant recipients and patients who experience 
prolonged hospitalization. Cell wall active agents such as pen-
icillin, ampicillin or vancomycin plus an aminoglycoside (Gen-
tamycin or Streptomycin), a linezolid and daptomycine were 
useful for treatment of diseases caused by E. faecalis [20]. Other 
agents such as a chloramphenicol may be used when multi 
drug-resistant strains are encountered. Ampicillin nitro fura-
tion, tetracycline or quinolones may be effective for urinary 
tracts infections [21]. 

The burden of human disease caused by E. faecalis has 
grown over recent decades. E. faecalis is a leading cause of var-
ious diseases. These were showing resistant to the currently 
available antibiotics pose real therapeutic difficulties [22]. Up 
to 90% ofEnterococcal infections in humans were caused by 
Enterococcus faecalis [23]. In this context, the present studywas 
carried out with thewhole genome sequence analysisusing the 
robust bioinformatics tools forsRNA predication, drug target 
identification and molecular modeling and docking studies to 
design and identify the potent inhibitors against the E. faecalis. 

2. MATERIALS AND METHODS 
2.1 sRNA Prediction 
Whole genome sequence of E. faecaliswas retrieved from the 
NCBI and analyzed. Further, resultant sequence was submit-
ted to sRNAPredict [24] tool to identify sRNA candidates. 
sRNAPredict tool uses the coordinate-based algorithms to 
incorporate the particular or relevant positions of individual 
predictive features of sRNAs and rapidly identify putative 
intergenic sRNAs. 

2.2 Prediction of Non-Human-homologous sRNAs 
These obtained sRNA candidates of E. faecalis were subjected 
to BLASTP [25], [26] NCBI server against Homo sapiens with 
default parameters to identify the non-homologous sRNA 
candidates and threshold expectation value with greater than 
10-4.  

2.3 Homology Model Development 
Homology modeling or Comparative modeling is the best the-
oretical method toconstruct the atomic resolution of a protein 
from its amino acid sequence (given query sequence or target 
sequence) and it should be accepted accuracy that iscompara-
ble to the best results achieved by experimentally.  Generated 
model quality mainly depends on the identity between the 
target and template proteins. Choloylglycine hydrolase of E. 
faecalis was queried against the protein databank (PDB) [27] 
using BLASTP to identify the template structure. An appropri-
ate template was identified based on the sequence identity. 
ClustalX was used to align the template and target sequences 
to carry out the homology modeling using Modeller 9v13 [28], 

[29].Twenty models were generated and applied for validation 
studies.  

2.4 Model Validation 
Based on the discrete optimized protein energy [DOPE] score, 
the model which was showing the least DOPE score consid-
ered as the best model and applied for the validation studies 
[30], [31]. The best model was validated by inspecting the 
Ramachandranplot  [32], obtained from the PROCHECK 
analysis [33]. The PROSA [34] analysis was also carried out to 
the final model to check the potential errors and energycriteria 
against the potential of mean force derived from aknown 
protein structures.  ProQ [37] validation was carried out to 
check the quality of the obtained final model. The root mean 
squaredeviation (RMSD) calculations were performed 
between the obtained final model and the template by 
superimposingthe structure of template on the 
predictedstructure of choloylglycine hydrolase of E. faecalis in 
order to assess thereliability of the model using Modeller 
9v13.The final model was refined using Prime  [32] and energy 
of the model was minimized using the OPLS (optimized 
potentials for liquid simulations) 2005 force-field [ 37]. 

2.5 Ligand Dataset Preparation 
Reported five inhibitors of choloylglycine hydrolase (phenyl 
methyl sufluoride, benzyl penicillin, cholicacid, deoxycholic 
acid and phenoxy penicillin)were obtained through the 
literature search were drawn using 2D skecther in Schrödinger 
software. Further these were prepared and converted in to 3D 
formats. These 3D formats were applied for shape based 
screening using the prepared 3D platimun database of 
ASINEX. The obtained conformers were further minimized in 
the Impact module using the OPLS-2005 force filed with 
distinct dependent dielectirc and conjugate gradient algorithm 
and other all parameters were kept default. All the optimized 
conformers were prepared using the LigPrep [38]and  Epik 
[39] was applied to remove the conformers which are not 
obeying the Lipinski’s rule of five.  

2.6 Protein Preparation 
The obtained 17th best model structure of choloylglycine hy-
drolase of E. faecalis was prepared using the Protein Prepara-
tion Wizard workflow of Maestro9.6 [40]. During the protein 
preparation process  hydrogens were added and water mole-
cules were removed (out of the 5 Å of active sites), partial 
charges were assigned using OPLS-2005 force field and proto-
nation states were defined and energy minimization with a 
small number of steps to relax amino acid residue side chains 
were carried out. Protein minimization was carried out using 
Impact refinement module in the presence of OPLS-2005 force 
field and terminated when the root-mean square deviation 
(RMSD) reached a maximum cutoff of 0.30 Å. 

2.7 Active Site Prediction 
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The active site residues of the modeled protein were 
investigated using the SiteMap [41]. Intially, SiteMap 
calculation begins with the search step method which 
identifies or characterizes through the use of grid points that 
may be suitable for binding ligands to the receptor. 

2.8 Grid Generation, Docking and Binding Free Energy 
Calculations 
The protein van der Waals radii scaling factors was set as1.0 
(default) and Grid was generated around the centroid of the 
active site residues in Glide v6.0 [42] and 10 Å X 10 Å X 10 Å 
grid box was generated. 

The prepared ligand data set was docked into the ac-
tivesite residues of choloylglycine hydrolase structure in the 
high throughput virtual screening (HTVS) protocol [43], [44], 
[45], [46]. XP docking is the most accurate method, in order to 
get the best leads we performed docking by applying the 
HTVS, SP and later with the XP docking mode from lower 
stringency to higher stringency.  

All obtained top docking poses were further applied 
to the binding free energy analysis and each ligand was re-
scored by the molecular mechanics/generalized Born surface 
area (MM-GBSA) approach in Prime [47]. 

GGG ∆∆∆∆ ++= SAsolvbind E  

Where, ΔE is the minimized energies, ΔGsolv is solvation free 
energies, ΔGSA is the difference in surface area energy of the 
inositol monophosphatase-lead complex and sum of the sur-
face energies of inositol monophosphatase and leads. The 
leads with highest negative binding free energy was selected 
and screened for drug-likeliness properties. 

2.9 ADMET Screening 
Absorption, distribution, metabolism, excretion and toxicity 
(ADMET)screening of obtained the best ranked leadswere 
carried out using QikPropmodule [48]. QikProp predicts the 
physicallysignificant descriptors and pharmaceutically 
relevantproperties. QikProp predicted 44properties for the 
molecules, consisting of principaldescriptors and 
physicochemical properties, along with adetailed analysis of 
log P (octanol/water), QP%, and logHERG. 

3 RESULTS AND DISCUSSION 
3.1 Prediction of sRNA 
The E. faecalis genome sequence is of 3.22 (Mb) size and com-
prising of 3257 genes and 3,112 proteins. By submitting ge-
nomesequence to the sRNAPredict tool, eight sRNA candi-
dates were identified.  

3.2 Prediction of Non-homologous sRNA 
Out of eightsRNA candidates, four are hypothetical proteins; 
two are frame shift candidates, one cobalt transfer protein and 

one enzyme, choloylglycine hydrolase.  The enzyme 
choloylglycine hydrolase is a non-homologous to human and 
which is involving in the glycocholate pathway.  Choloylgly-
cine hydrolase enzyme was selected as a drug target. 

Present drug discovery and development focused to iden-
tify and optimizing the drug candidates that may be act 
through the inhibition of specific enzyme targets.  The im-
portance of enzymes as targets for drug discovery started from 
the high levels of target validation and target tractability 
which characterize the protein classes [49]. In this context, 
Choloylglycine hydrolase enzyme was selected as a drug tar-
get; further homology modeling and molecular docking stud-
ies were performed.  

3.3 Homology Modeling of Choloylglycine Hydrolase  

The main intend of the homology modeling (or) comparative 
modeling is template selection and sequence similarity 
between the target and template. Choloylglycine hydrolase of 
E. faecalis protein sequnce was queried in the BLAST against 
the PDB (2BJF) and template hit was found as conjugated bile 
acid hydrolase from Clostridium perfringens in complex with 
deoxycholate (DXC), it showed 44 % identity, 100% sequnce 
coverage and resolution of 2 Å. This structure was slected as a 
template for model generation using Modeller 9v13. 20 models 
were generated and ranked based on the DOPE score.Selection 
of the best model from the twenty models was scruti-
nizedbased on DOPE score [30], [31].The 17thmodel showed 
lowest DOPE score of -35607.4 kcal/mol,was selected as the 
best model, lower DOPE score represents relatively more sta-
ble 3D conformation [30], [31] and model was applied to 
further validation studies (Fig.1).  

3.4 Validation of the Predicted Structure 
The overall geometric and stereochemical quality of the 
obainted best17thmodel wasassessed by ADIT (PROCHECK) 
(Fig. 2(A)), ProSA (Fig. 2(B)) and ProQ (Fig. 2(C)).A good 
quality model would be expected to have more than 90% 
residues in most favored region[30],[31]. Ramachandran plot 
showed  95.9% residues in the most favored region was 
considered to be a valid model with good stereochemical 
quality [50].2 %residues were fall under the allowed region, 
1.4% in the generously allowedregion and 0.7% in the 
disallowed region. These results revealed that the majorty of 
the amino acid residues were present in the phi-psi 
distribution that is consistent which gives the the model was  
reliable with good quality (Fig. 2(A)).  
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Fig. 1. 20 modeled structures with the DOPE scores

ProSA [36] is a tool widely used to check 3D models of 
protein structures for potential errors. The overall quality 
score calculated by ProSA for a specific input structure is dis-
played in as Z-plot and energy plot (Fig. 2 (B), (C)).The Z-score 
of-7.41 obtained for choloylglycine hydrolase model reflects 
the predicted structure correlates well with experimentally 
determined protein structures of similar length currently 
available in the protein data bank (PDB). The energy plot re-
flects overall energy for most part of the protein including 
active site is negative. The ProSA result affirms the structure is 
of good quality. The ProQ showed LG score of 4.215 reflects 
the model is of extremely good quality. The predicted 3D 
structure was visualized in PyMol (Fig. 2 (D)).  
3.5 Prediction of Ligand Binding Site Residues Using 
SiteMap 
Using the SiteMap, Cys2, Arg18, Met20, Ile22, Tyr24, Phe26, 
Phe61, Thr66, Phe67, Ala68, Gly80, Leu81, Asn82, Val102, 
Tyr103, Ile133, Ile137, Pro138, Asn139, Thr140, Leu142, Trp144 
and Trp144 were predicted as active site residues which were 
also correlated with the interactions shown by the template 
with co-crystal ligand. 
3.6 Protein Preparation 

The validated model was optimized; energy minimization was 
carried out to improve favorable steric contacts. The prepared 
choloylglycine hydrolase was directed towards molecular 
docking for virtual screening with the prepared ligand da-
taset. 
3.7 Compiling Ligand Dataset 

Shape based screening of five published inhibitors were car-
ried against the prepared ASINEX 3D database [51] using 
PHASE and obtained hits were applied to LigPrep and Epik 
tools. 2550 ligand conformers were obtained after the Post 
LigPrep and Epik analysis. The prepared in house library of 

2550 conformers was applied for docking.  

 
Fig. 2. Validation of choloylglycine hydrolase of E. faecalis 
(A)Ramachandran plot of modeled choloylglycine hydrolase 
of E. faecalis.(B) Z-score plot ProSA analysis, (C)Energy plot 
obtained through ProSA web analysis (D). 3D-Structure visu-
alization of choloylglycine hydrolase by PyMOL. 
 
3.8 Glide Molecular Docking and Binding Free Energy 
Analysis 

Molecular docking is a computational method that gives 
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binding ineractions between the small molecules and with the 
bindingsite/active site residues of the protein; scoring 
functions were used to assess which ofthese small molecule 
conformations revels the best complement of the protein-
bindingsite. Two types of procedures were present to assess 
the quality ofdocking methods: (i) Docking accuracy, which 
deals with the true or exact binding mode of the ligand to the 
target protein,and (ii) Screening enrichment, which gives how 
muchbetter a docking method is identifying true 
bindingligands than random screening.In this we followed 
screening procedure throguh HTVS, SP and XPdocking[43], 
[44], [45], [46]. 

TABLE 1  
MM-GBSA binding scores of five published inhibitors 

S. No. Inhibitors MM-GBSA 
score(kcal/mol) 

1 Phenyl methyl suluoride -33.854 

2 Benzyl penicillin -56.111 

3 Cholic acid -31.010 

4 Deoxy cholic acid -44.934 

5 Phenoxy penicillin -30.734 

 
A receptor grid of 10Å x 10Å x 10Å was generated around 

the active site residues of choloylglycine hydrolase. Initial 
docking of 2550 compounds into choloylglycine hydrolase 
grid showed 241 compounds docked with significant Gscore 
in HTVS. The 75 top ranked compounds were re-docked using 
standard precision (SP) docking. Sixty compounds were ob-
served to show significant Gscore in SP docking, hence re-
docked using extra precision mode (XP). The top 25 com-
pounds ranked based on XP Gscore were evaluated through 
Prime/MM-GBSA free energy calculations. Out of 25 lead mol-
ecules, five lead molecules showed highest negative ∆G bind 
scorecompared to all published inhibitors and among all 
lead1showed the lowest binding energy of -88.9062.4 kcal/mol. 
Among the five existing inhibitors (Table 1), benzyls penicillin 
showed ∆G score of -56.11 kcal/mol were shown in Tab.1. 

In the co-crystal experimental findings showed that 
Arg18wasinvolving in the hydrogen bond interaction with the 
ligandDXC.The binding affinity of lead 1 was observed to be 
better compared to existing five inhibitors and well collaborat-
ed with the template co-crystal active site residues. The bind-
ing orientation of lead1 also collaborated well with existing 
inhibitors. Importantly, lead 1 is interacting with active site 

residues through hydrogen bonding, van der Waals interac-
tions and π-π stacking. Lead 1 is interacting with Arg18 π-π 
stacking and Cys2, Met20, Ile22, Tyr24, Phe26, Phe61, Thr66, 
phe67, Ala68, Gly80, Leu81, Asn82, Val102, Tyr103, Ile133, 
Ile137, Pro138, Asn139, Thr140, Leu142,Trp144residueswere 
involved in the van der Waal’s interactions(Fig.3).Lead 2 is 
forming one hydrogen bond with the Thr66; Lead3 was 
formed one hydrogen bond with the Thr140; Lead 4 was 
formed two hydrogen bonds with the Tyr24 and Thr140 and 
Lead 5 was formed two hydrogen bonds with the Val102 and 
Leu106.  All the five lead molecules exactly binding in the ac-
tive site region which were well collaborated with the tem-
plate 2BJF active site region. Residues involved in hydrogen 
bonding and van der Waal interactionsof five lead molecules 
were analyzed and showed in the Fig.3. 

3.9 Predicted ADME Properties 
The durg like properties of five lead componds were analyzed 
using the QikProp[48] and 44 physically significant 
descriptors and pharmaceutically relevant properties were 
reported (Tab. 2). The properties which includes molecular 
weight <500 Daltons, <5 H-bond donors, <10 H-bond 
acceptors, log P<5 (octanol/water) these properties all are well 
collobrated within the acceptable range of Lipinski’s rule of 
five. The rule is to evaluate the drug likeness of compounds 
that explains the chemical compound is that may be active 
drug by following the pharmacologcal and biological 
properties. It also describes the drug molecular propeties that 
are very important in the pharmacokinetics in the human 
body by following the ADMET properties. Further, ADMET 
properties , log P MDCK, log Kp (skin permeability), humoral 
absorption, partition coefficient (QP log P(o/w)) and the water 
solubility (QP log S), the cell permeability (QP PCaco) and  all 
other pharmacokinetic properties were within the acceptable 
range, which defines the proposed five lead molecules would 
act as a potentail drug-like molecules reinforce these findings. 

Choloylglycine hydrolase enzyme is mainly involving in 
the glycocholate, carbohydrate, amino acid and lipid metabo-
lisms. These pathways were key energy sources for the the 
organism. By inhibiting thecholoylglycine hydrolase leads to 
the starvation of E. faecalis. Infections caused by this organism 
are gradually increasing in the present world and a virulence 
mechanism was unknown. Hence five lead molecules were 
proposed as potent inhibitor molecules would be intriguing 
for rational drug design against Enterococcal infections and 
could be highly encouraging for future endocarditis therapy if 
tested in animal models.  
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Fig. 3. Docking interactions of five lead molecules with ΔG bind score 

TABLE 2  
QikProp properties of top five lead compounds 

 

4 CONCLUSION 
Enterococcus faecalis is a multifaceted lactic acid bacterium with 
an intimate relationship to human health and disease. It also 
colonizes the gastrointestinal tracts of new borns and adult 
people. E. faecalis is also a prominent cause of multi-resistant 
nosocomial infections.Small RNAs (sRNAs) are playing im-
portant roles in the wide variety of cellular processesand regu-
latory roles in a variety of cellular processes and also control 
over the virulence gene expression with respect to the host 
signals. 

In the present study, sRNAPredict analysiswas performed 
against the whole genomesequence of Enterococcus faecalis. 
Eight sRNA candidates were obtained and choloylglycine hy-
drolase which is non-homologous to the Homo sapiens and it-
was proposed as drug target. Three-dimensional structure was 
generated using Modeller 9v13 and structural analysis for 
generated model revealed that the model is reliable and a 
good quality model with stable lowest energy. We performed 
shape based screening towards the inhibitors of choloylglycine 
hydrolase of E. faecalisfrom using the ASINEX platinum subset 
database and prepared in-house library of dataset and import-

ed to Maestro v9.6.  Weproposed five lead molecules from the 
docking studies and free energy calculations which arehaving 
better binding affinity, thanthe five published inhibitors. 

Further, binding conformation analysis of the five leads 
revealed that active site residues of choloylglycine hydrolase 
Arg18, Tyr24, Thr66, Val102, Leu106 and Thr-140 wereinteract-
ing with the leads. All the five lead molecules were obeying 
ADMET and other pharmacological properties. Hence, these 
five lead molecules blocks the enzyme activity leads to starva-
tion of E. faecalis and its pathogenicity. 
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